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rh Abstract

0

‘g§v Define Y0 to be a geometric convolution of X if Y. 1is the
B sum of N0 i.i.d. random variables distributed as X, where N

0
is geometrically distributed and independent of X. It is known

' that if X is non-negative with finite second moment then as

p~+ 0, YO/EYO converges in distribution to an exponential distri-
A bution with mean 1. We derive an upper bound for d(YO), the

distance between YO and an exponential with mean Y namely for

0’
Ut 0 <p<1/2, d(Yo) < cp where c¢ = EXZ/(EX)Z. This bound is
. asymptotically (p-+0) tight. Also derived is a bound for d(YO+Z)

where Z > 0 is independent of YO.
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1. Introduction. If {Xi, i>1} is an i.i.d. sequence and N

K 0
N
)
d:f': is geometrically distributed (Pr(N =k) = qkp, k=0,1,2,...) and
:c:'f.; _
independent of {K }, then ¥, 20 is called a geometric
l:. N
f convolution of X. Closely related is the random variable Y =} Xi
DA 1
s
“5 where N = No+l, which is also referred to as a geometric convolution.
a; Geometric convolutions arise naturally in many applied probability
e
Qf models. A recent paper of Gertsbakh (1984) discusses a rich variety of
!,‘
3‘ applications in reliability and queues and surveys research in the area,
[ 4
t
0 most of which was performed by Soviet authors. Feller (1971) Section
X
3\ XI1.6 elegantly discusses terminating renewal processes, the time until

S termination being a geometric convolution. Several authors have

\A stuhied random sampling or "thinning" of renewal processes which results
. in new renewal processes with geometric convolution interarrival times.
A Jacobs (1986) investigates a geometric convolution in the context of

1e combining random loads and waiting for the stress to exceed a given

ay level. In a G|G|1 queue in equilibrium the waiting time distribution
is a geometric convolution and has been studied in this context by
Szekli (1986) and Kollerstrom (1976). Finally, numerous applications

arise in regenerative stochastic processes. Consider a regenerative

! process (Smith (1958)) where in each cycle an event A may or may not

g‘ occur, independently of other cycles. The waiting time for A to
A
?' occur is then of the form:
:?
Yo
o (1.1) W=} X, +2=Yy+2
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fs where A occurs for the first time in cycle N0+1, NO is geome-

” tricially distributed with parameter equal to the probability of A

f occurring during a specified cycle, and Z is the waiting time from
:: the beginning of cycle N0+1 until A occurs.

: Keilson (1966) recognized the prevalence of (1.1) and considered
i the case of small p. He showed that if the Xi are non-negative

)

§ with finite second moment then W/EW converges in distribution to

. an exponential with mean 1 as p + 0. Thus the waiting time for

; a rare event (small p) to occur is approximately exponential. Solovyev,
%: (1971) considered a sequence of random variables of the form (1.1) in
i; which the distribution of X varies with p and obtained conditions
§. for asymptotic exponentiality as p -+ 0. Solovyev also obtained error
§ bounds fo: the exponential approximation.

’? ) In this paper we seek to bound the distance between a geometric

% convolution of non-negative random variables and an exponential distri-
i bution with the same mean. This problem is cited by Gertsbakh (1984)
Y as being "of great interest for engineering applications’. Defining
g‘ X, Y and YO as above, q = l-p, u = EX, Wy ® EXZ. | - u3/2“:, and
5 F, (t) = Pr(Y, > t) we derive:

; YO 0

3 ez e

:5 (1.2) qe qu < FYO(t) < e @y lnﬂ .

Y

Defining d(YO) as the sup norm distance between YO and an

exponential distribution with mean EYO = qu/p, it follows from

(1.2) that for 0 < p < 1/2:
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'::; (1.3) d(YO) < 2yp = uzp/u2 .

sl

:é The bound (1.3) is asymptotically (as p - 0) sharp in the

3:% following sense. Since the problem is scale invariant, the true

5Q3 upper bound is a function of y and p, say B(y,p). We show

? : (Section 4) that 2yp/(2yp+q) < B(y,p) and thus B(y,p)=2yp(l+o(1l)).
)

Wy

Bounds are also obtained for d(Y0+Z) where Z is a non-negative

*
random variable independent of YO’ for d(Y), and for d(Y ) where

*
«55 Y is the stationary renewal distribution corresponding to Y and
£
‘,.;.: Y-
vy The current bounds offer improvement over those of Solovyev
)
-
,;: (1971) in that they are derived under less restrictive conditionms,
:g‘ require less information about X and Z to compute, and are in
1wl genéral tighter. This comparison is discussed in Section 4.
A%
:'; In the above X 1is assumed non-negative with known first two
R,
1
’@g' finite moments. In Section 3 we restrict X further and obtain
J
S improved bounds. Perhaps the most interesting of these results is
»
\$ that if X 1is assumed NBUE (new better than used in expectation,
4
:\. defined in Section 2) then d(YO) is exactly equal to p.
oy Our methodology is a combination of reliability and renewal
i. H
t} theory geared to exploit the fact that YO is NWU (new worse than
t
' v .
}. used) as pointed out by Daley (1984) and Kollerstrom (1976). The
‘;;. technique of studying random variables through their aging properties
[ v‘,'
\ )
::- was developed by several authors, most notably by Barlow, Marshall and
4 -f:
Y Proschan, and is lucidly presented in the text of Barlow and Proschan
M (1975).
‘-
A
‘ .
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2. Bound for General X. A distribution F on [0,») is defined to

be NWU (new worse than used) if: r
(2.1) F(t+x) > F(t)F(x) for all t, x > 0 .

Similarly NBU (new better than used) is defined by reversing the
inequality in (2.1). Thus F 1is NWU (NBU) if its survival distribu-
tion at age O 1is stochastically smaller (larger) than its survival
distribution at age x for all x > 0.

Let {Xi’ i > 0} be an i.i.d. sequence of non-negative random

variables, let NO be independent of this sequence with

n
Pr(Ny=k) =q“p, k = 0,1,... and define S =) X, and Y, =S .

1 0 N

The following simple but very useful result is due to Daley (1984)

and Kollerstrom (1976).

Lemma 2.1. YO is NWU.

Proof. For t > 0 let Yt be distributed as the condition distri-

bution of Yo—t given YO

Xt be distributed as the conditional distribution of SN +1
t

> t. Define N_ = max{k:S < t} and let
-t given

YO > t. Then:

where Xt and YO are independent. []
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Lerma 2.2, below, is a slight generalization of a known result
(Barlow and Proschan (1975), p. 162), the generalization allowing

for an atom at zero which will be required for YO.

PR S

Lemma 2.2. Assume that W is NWU with an atom of size p at zero,

but with no other atoms. Let F be the cdf of W and M = z F(k)
0

the renewal function. Then:

. w D &

F(t) > qe'Pq-le-(M(t)—l) , o (M(t)-1)

Proof. Let {Nl(t)—Nl(O),t > 0} be a non-homogeneous Poisson process

-

with E(Nl(t)-Nl(O)) = -Ln(?(t)/q). This process has its first event

wak Al

b epoch Tl distributed as w[w > (0, 1its next interarrival time

and in general its kth inter-

-y -

— . . _ !
T2 Tl distributed as W Tl|w:>Tl

‘ arrival time T -T, , distributed as w-Tk_l[w:>Tk_l. Since W is NWU

we have:

(2.2) Y wtor k> 2.

T e T Mot

Next consider {Nz(t)~N2(0), t > 0} where N, is a renewal
process with interarrival time W. The first event epoch of

A N,(t)-N,(0) occurs at S, v WiWw >0~ T,. Subsequent interarrival

. times are distributed as W. It follows from Sl e Tl and (2.2)

that:

st

; (2.3) Tk > Sy for k > 1

‘ l‘
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Thus from (2.3):
st
( :2 . Z} ) bq:[ ( t ) -Pq:l.( () ) :EL b‘ :Z ( t ) "rq :! ( () ) .

Taking expectations in (2.4):

(2.5) -La(F(t)/q) < M(t)-q L .

Finally, the result follows from (2.5) and the observation that

-pg-1 -
ePT7 > qtpgh = 1. [

q

Corollary 2.1. Suppose that X > 0 has F(0) <1 and My = EX2 < o,

Then:

_ -1, -1 -1 -t/EY
F, (0) > qe*t?e (tw "+2y-1) _ qe P9 (2\(-1)e 0

0

where vy = u2/2u2.

Proof. Case (i). We first consider the case in which X has no atoms.

Then Y, has an atom of size p at zero and no other atoms. Define
v

G as a geometrically distributed random variable with parameter

P
p(Pr(Gp=k)==qkp, k=0,1,...). Define NY and NX as renewal
0
processes with interarrival times YO and X respectively, and
> = EN, , = EN_.
My By s My = BN
Note that NY has 1+Gp renewals at zero, and Gp renewals at

0
each renewal epoch of NX in (0,»). Thus:

bR
t 4




N - v - M
t"‘l‘

Y
R
R (2.6) My (0 = 0 Lepq 0t (£)-1) = 1+pq e (e)
c:"!
&:!: Alternatively (2.6) can be easily proved using Laplace transforms.
AL
W Next, we note Lorden's (1970) upper bound for the renewal function:
i
)
KN
W (2.7) (£) <=+ 2
,é‘!.;: . MX t) < m Y .
R
M(i’!'l
. The result now follows from Corollary 2.1, (2.6), (2.7) and
o 1
:: EYO = pq M.
b
-_f:!y'.' Case (ii). Now consider the general case. Define e to be uniformly
.";:0’ distributed on (O,En), n=1,2,..., with 1lim e, = 0, e independent
Ry
..y‘; of X, and Xrl = X+en. Since Xn converges to X 1in quadratic mean,
i -“: 2 2 Gp
A . =
i‘ | - ML E EZXn + u and Y, = EXn/Zun -+ y. Define YO,n ; Xn,i’ the
Q4
2 analogue of YO with X replaced by Xn. Then by choosing Xn,i=xi+en,i
~ G
R 2 P 2
:x!., we have E(Y -Y )" = E(Z e .)°>0 as n-+> oo, Thus Y converges
o fa O,n O l n’l O’n :
2
’:..:: in quadratic mean and thus in distribution to YO. By Case (i):
W ‘
o
g = e Leay -1
‘o (2.8) F,  (t) > qe Pl By Teh
. 0,n
L)
o
i
§
i
: It follows by letting n =+ « in (2.8) that the desired bound for
0
XK Fy (£) holds at all continuity points of Y,. But since FY is
o 0 0
::3:0 right continuous and the bound is a continuous function of t, it
i
,:n:, follows that the inequality must hold for all t > O. D
)
N .?'.
N A non-negative random variable X with distribution F is
:";:: defined to be NWUE (new worse than used in expectation) if u = EX < o

S S I

' & —
iR Y .93,\ P m?l,t't.ﬂ bth »‘h s' ﬂ. 0.
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and:
(2.9) E(X—t,X>~t)_1 u for all t >0 .

Similarly NBUE (new better than used in expectation) has the
inequality reversed in (2.9), which implies that u must be finite.
*
Define X to be distributed as the stationary renewal distribution
. * -1 x = *
corresponding to X; X has cdf G(x) = u fO F(t)dt. Let h (x)
* % — —
to be the failure rate function of X defined by h (x) = F(x)/uG(x).
* -1 ,
Noting that h (x) = [E(X—X}X:>x)] it follows that NWUE is

equivalent to each of the following:

(2.10) h*(x) <u™l for all x> 0
st &
(2.11) X < xX* .

Moreover, (2.10) implies:

(2.12) X° > ue.

Similarly X NBUE is equivalent to each of the reverse inequalities
in (2.10) and (2.11), with (2.10) holding for all x > 0 with F(x)>0.
Moreover NBUE distributions satisfy the reverse inequality in (2.12).

Define ce to be an exponentially distributed random variable

with mean c¢. For X, ~ F_, X2 ~ F, define D(Xl,Xz) = D(Fl’FZ) =

1 1

u
sup!Fl(t)—Fz(t)f. Finally define Py =|;Z§ - ll.
u

P Al e T «
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Lemma 2.3. If X is either NWUE or NBUE then U(X” ue) < o..

Proof. Consider the NWUE case, the NBUE case being totally amalogous.
-1

First, defining A = {t:F(t) 3_e—tu }:
* -1 -t -1 = —ep
(2.13) 0(X",ue) < sup [G(B) - J u e dtf =y J (F(t)-e )de .
B B A
From (2.11), (2.12) and (2.13):
-1 © -1
(2.14) D(x*,ue) < u”t j @(t)~e"™ Har < u7t J G(r)-e"™ Hdt = o il
A 0

* . . . . .
Define Y  to be the stationary renewal distribution corresponding

to YO and Y.

Corollary 2.2. If X > 0 with F(0) <1 and uz < o, then

D(Y*, (EYg)e) < pq Y.

v, = pq_lY. The result now follows
0

Proof. By simple computation 0

from Lemmas 2.1 and 2.3. []

Recall that d(YO) = D(YO,(EYO)E), the sup norm distance between

YO and an exponential distribution with the same mean.

Theorem 2.1, If X > 0 with F(0) <1 and u, <=, then:

2
-1 -t/EY -t/EY
(1) qe P9 (2D, . Fy (t) < e +Ypq
0

_ 2yp, 0 < p < 1/2

(11) d(Y,) <pmax(2y,yq ) =
0 -1

Yqg "p, P > 1/2

Proof. The bound on the left of (i) is the conclusion of Corollary

2.1. The upper bound follows from Lemma 2.1, (2.11) and Corollary 2.2

by:

(" e O )
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% _ -t/EY,  _ -t/EY, N -1

K (2.15) FYO(t)-e < Fyx(t)-e < (Y » (E¥y)e) < vpq

o

! Finally (ii) follows from (i) noting that:

Wt

)

. -t/EY, -t/EY -1

; (2.16) e OF, (o) <e  O1-qePd (2D

tap i —

Ly 0

:I. -1

Y < 1-q(1-pq " (2y-1)) = 2vp .

o

b ]

b, ~1

oo Thus, d(YO) < max(2yp,Ypq ) < 2yp for p < 1/2. 0

o

[ Corollary 2.3. Under the conditions of Theorem 2.1,

;ii d(Y) f_pq_lmax(l+Yq-l,2y—l) ~ pmax (14+y,2y-1).

]

c'é' Proof. Since ?&(t) = q_l—é (t) we can multiply all three sides of

i - 0

e °

S inequality (i) of Theorem 2.1 obtaining an upper and lower bound for

R = . -t/EY

5*: FY(t). Subtracting e from both FY(t) and the upper bound
.

B we obtain:

.r"

.g

o -t/EY

L - - -1 "t - -

;%:f (2.17) FY(t)—e t/EY < sup(q le 0-e t/EY)-+yq 2p

iy L L
‘ = pq “(l+yq )

f';‘

Aot

"j = -t/EY =

o Subtracting FY(t) from e and from the lower bound for FY(t)
M

b yields:

E§- _ _ _ -t/EY

Ol (2.18) e t/EY—FY(t) < sup(e t/EY—be 0)

T

-1
-Pq (ZY-l).

where b = e

NG S
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Proof. Let F(t)

12
For b > q, the right side of (2.18) equals pqp/qezY_l
which is bounded above by p, while for b < q the right side
of (2.18) equals 1-b which is bounded above by pq~1(2y-l).
Thus d(y) 1is bounded above by the larger of pq_1(1+yq‘1) and d
q-l(ZY-l), and the result is thus proved. [I

We next seek bounds for d(Y0+Z) with Z > 0 and independent

of YO' A few simple preliminary results are first presented.
First, for ¢l <c, a routine calculus argument proves:
e & cI/CZ.cl ¢y
(2.19) D(c,e,ce) = (1 - =) () <1-—=.
1772 ¢, ey - ¢y

Next, note that for any constant B8:
(2.20) D(wl+s,w2+s) = D(wl,wz) .

It follows from (2.18) that for any random variable V independent

of W, and W

1 2 that:

(2.21) D(w1+v,w2+v) < D(wl,wz)

Next let Z > 0 be independent of € with Laplace transform y &

“1gz -1

Lemma 2.4, D(ce,cs+Z).i lJI(C_l) j_l—e-c < ¢ "EZ.

-1
1-e~¢ t. For t >y > O:

(2,22) F(y)

(F(t-y)-F(t))/F(t-y) > F(t-y)-F(t)

'M? Tt n h *"! By f’,l ’.o ,s,'.o ‘.“‘ '

& et o vh e O JOQCAX)
Wyt "’H “*'.g}fv..'th ,l,t_'! ,' ‘.-a“ﬂo ‘5.!'.,0' a, e c.ﬂ
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4 (2.23) F(y) = 1-F(y) > 1-F(t) = F[(t-y) 1-F(t) .
Thus F(y) z_i‘-[(t-y)+]—?-(t) for y, t > 0. Consequently:

(2.24) Pr(ce+Z > t)-Pr(ce > t)

E[F(t-2)*-F(t)] < EF@2) .

458 Now:

@ -1 -1
o (2.25) EF(z) = E[1~e ¢ %] = 1™ < 1-e¢ B2, []

Finally, we need a simple but useful result:

:i: ‘”

AR
-'.'

Lemma 2.5. Suppose that X and Y are both either stochastically

whe larger or stochastically smaller than Z. Then:

a“:‘!

;'( 0(x,Y) < max(D(x,2),0(Y,2)) .
A

;‘:. Proof. Immediate.

2‘ ll

v The above inequalities now enable us to derive:
o

o Theorem 2.2. Let X be as in Theorem 2.1, and let 7 > 0 be
$ -

s

s independent of X with EZ < =, Define cSZ = EZ/u. Then:
W

o, . -1

s (i) d(YO+Z) < [2y+cSZq lp, for 0 < p < 1/2.
W

g

- . * -1

' (11) d(Y ) < ypq ~ .

.4

l';‘]

"o

e

LR

Pt Proof. By the triangle inequality:

®

I,,‘s’.

w‘,:l

(35
.'.)

Barroum AJUR D ' 9 AR AR
" ' Vet "? r'*i,r‘l‘-? '..r’-*s y"f‘h‘*fﬂ'.‘.l'?*‘:n"v‘,_o‘3& 5““".?’ a
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(2.26) d(Y0+Z) iU(Y0+Z,(EYO)e+Z)+D((EY0)e+Z,(E(Y0+Z))s) .

By (2.20) and Theorem 2.1:

(2.27) D(Y0+z,(EYO)e+Z) < d(YO) < 2yp, for 0 <p < 1/2.

By Lemma 2.5:

(2.28) D((EY,)e+Z, (E(YO +2))e) < max[D((EYO)e+z, (EYO)e)

D((E(YO-FZ))E,(EYO)E)] .

By Lemma 2,4:

: —EZ/EYO -pq GZ -1
(2.29) v((EYO)€+Z,(EY0)€) < l-e = l-e < pq 52 .
By (2.19):
EY
2.30 __0 EZ _ -1
(2.30)  D(E(Yy#2))e, (EYgle) < 1 BT +2) < Y, pq ¢, .

Result (i) now follows from (2.27)-(2.30).

Finally by (2.12), Lemma 2.5, Corollary 2.2, and (2.19):

(2.31) ar®) < max[D(Y*,(EYO)s),D((EY*)E,(EYO)E)I

-1
<pPq Y.

Thus (ii) holds and the proof of Theorem 2.2 is complete.

AV A a0 Sy Wy T T e OO0 O0O0ORGCR DA NN W T £ 008000
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u
Ag,:: _ 3. Improved Bounds Under Additional Assumptions. In this section we
. outline the improvements in the results under various aging assumptions
S
e on the distribution of X.
Wy

A% 3.1. NBUE. Suppose that X is NBUE distributed. Then

‘tig) % St % St st *
N Y = YO + X < YO +X = Y, thus Y is NBUE. Note that Y is
o}

™

)'_': the stationary renewal distribution corresponding to both YO and Y.

It thus follows from (2.10) that:

.h'::
[}
]

o (3.1.1) Pepl® e goran e>0.

:"I L Y - qu -

1y

N
€

\‘..'
! Consequently:
Iy
ol

"g. - Lx - E}E

o A ] qu = —(t) < H >
f (3.1.2) e < F *(t+x)/F £ e for all t, x> 0 .
. - Y* - -

"P Y

ni

W

) *

o::: ’ Thus for p small, Y Thas an approximate lack of memory in
i' A

D that the residual age distribution varies with t by at most »p
ﬁ;li

b )

' g in sup ncrm.

v,

:;", Note that from (3.1.1), (EYO)e iY* < (EY)e and from (2.11),
L St 4 st ' '

Y, £ Y < Y. Since D(Y,YO) <p and D((E&O)e,(EY)e) <p it

E.-,'; follows that:
K-
“~$

y * * *

= (3.1.3) max (d (Y ,YO),d(Y ,Y),d(Y ,(EYO)E)) <p.

N
S0
o

::.‘ Furthermore by Lemma 2.3:

M

B x

:- (3.1.4) d(Y", (EY)e) < oy = poy .

R
‘1:..

to et aby g DODOOO00K (i ) OI00GUTI 0 NN [
IR RGO ..f».‘:-:," ffr.!'j."‘ ":z "h;‘.?g‘: -,‘:."f ffs,‘ AL SUNLIAT N .,‘:e ,‘_'v,'f-.,";n.
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bt From (3.1.3) and (3.1.4), using the methodology of Section 2
it is straightforward to derive:

(3.1.6) d(m) <

A
o

) (3.1.7) d(¥") < poy

Ls

(3.1.8) d(Yy+2) < p(l+q "6,)

e (3.1.9) Fy(0) > et/
o (3.1.10) e < FY(r.) < q‘le’t/EY .

Note that Pr(Y0=0) = p/(1-qPr(X=0)) > p. It follows that for any

-

non-negative X with finite mean:

Yt (3.1.11) d(¥y) > p .
Thus (3.1.5) and (3.1.11) show that for F NBUE:

(3.1.12) d¥,) =p .
e Finally, we mention that when Py < p/2 we can improve on (3.1.6)

= by using Daley's (1986) bound for NBUE distributions applied to Y.

This yields:

- (3.1.13) d(Y) < V2o, = Y2poy

e AC : . ) ) : RNOASAORAAA S TN ACACA LN AAOOAN N RGN NK
VO AT L R "‘*"‘,' i ‘f“'“"‘ Oy ,‘.‘"‘ S O e R S ST e

b X T »‘_-:v“""\‘_ .
Sy s 5_1&. FYCREE A R )
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3.2. NBU. If X 1is NBU then an argument similar to the NBUE case of

o Section 3.1 shows that Y is also NBU. Now YO is NWU, Y 4is NBU
Ry and Yo-t!YO >t % vty >t forall t > 0. Thus:

At

st t

0 (3.2.1) Y, < Y-t|v>e <y

W —

o _ Folt+x)

Y (3.2.2) qFY(x) == FY(x) for all x, t >0 .

Fy(t)

9k

W

g& The residual age distributions thus cannot vary by more than p
h

f“- in sup norm.
v

2; Since Y 1is NBU we can derive an analogue of Corollary 2.1 for Y:
I

g — -
a (3.2.3) Fy(t) < P /Y

ﬁ: Combine (3.1.9), (3.1.10) and (3.2.3) to obtain

o

o

»,

8

.Q

(%

By

N -t/EY _

‘% (3.2.4) max (e O,e_t/EY-pox) < Fy(t) j_epe t/EY .

“.

B

¢

20 3.3. NWUE. Assume that X 1s NWUE distributed. It follows from
¥

. the argument of Section 2.1 that Y is also NWUE. Thus by Lemma 2.3:
4

ah

3

' *

W (3.3.1) DY, (EX)e) < poy .

0

o st

QQ Since Y < Y ((2.11)) it follows from (3.3.1) that:

i

= - Y -t/EY
: (3.3.2) Fy(t)-e*/EY < P (t)-e /EY < poy
&

* LR Ry, Vi LT : LY LA SR
FHARTONE Ho 0y ¥ oD G
. . X D S
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>

e

% :

},a (3.5.3) d(Y0+Z) f_p(Y+6Zq ) .

R

u: \ 3.6. DFR. A random variable on [O,=) is defined to be DFR

:l::.' (decreasing failure rate) distributed if X—t!X> t 1is stochastically
)

g decreasing in t > 0. Shantikumar (1986) recently proved that geo-
A

:::. metric convolutions of DFR are DFR. Thus if X 1is DFR then so are YO’
."

f:E:' Y and Y. Using the DFR property of Y and YO it follows from
I Brown (1983) p. 422 that:

o

Y N * Poy

;!:tl (3.6.1) max (d(Y),d(Y")) i_p_(:?'T

. ah OY

I 0 _ _py_

.6. d = .

DY (3.6.2) (YO) < Py 1 pytq

S YO

".‘,'-
\

e A geometric convolution of DFR random variables arises naturally
E_‘: in the study of time to first failure for repairable systems (Brown
Kt

Y (1984a) p. 611).

S ~'\

£ %n = 8 P AN NN A % W s e L
R0 UMM RIS T 1,14 T, a T S AR BAKIRS

;‘ 3.7. IFR. Assume that X 1is IFR (increasing failure rate). Then it
.-‘ . follows from Brown (1984b) that:
"

& £ o’
o3 (3.7.1) M(E) > =+ =

. U
4.2

o

. where M 1is the renewal function corresponding to X. Then (3.6.1)
0

i:-‘: and an analogue of Corollary 2,1 yields:

e

..-:;

“n — —p(M(t)-1) 2°xP _¢/EY
_ (3.7.2) FY(t) <e <e e .
-';,;.
g%

"\.'

o

Y

. f.

@

%
.;2:;;'-

.~ Nt Tt Y -

B 0 LN o (A
H '«’“‘h"‘:"- >1 bi\la‘.‘.‘:‘ :’0‘.\ 15 RPN

-4
\ "‘"‘3 N &
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Since for X NBUE, 0 < py < 1/2, we see that (3.7.2) improves

upon (3.2.3).

3.8. Pr(X=0) =8¢(0,1), Known. If B = Pr(X=0) 4is known, with

0 < 8 <1, then an improvement in the bound for d(Yo) can be
achieved. Define X' to be distributed as the conditional distri-

bution of X given X > 0. Then:

Gp Gp*
t
(3.8.1) Y X, % Y X!, where p* = p/(1-Bq)
1 1 1
(3.8.2) Ygr = (l-B)YX .
From Theorem (2.1):
(3.8.3) d(Yy) < 2vg.p* = (2vyp) (1-8)/(1-Bq)

The IMRL class is closed under the transformation X' =+ X for all

0 <8 < 1. Thus (3.5.1), (3.8.1) and (3.8.2) imply that for X IMRL:

(3.8.4) d(Yo) j_(Yxp)(l—B)/(l—Bq)

4. Comments and Additions.

4.1. Consider XOl ~ Bin(l,a), 1i.e. Pr(xa=l) = 0, Pr(Xa=0) = l-n,
Then Yy ™ EXi/Z(EXa)2 = (2&)-1, thus as a ranges from 1 to 0 Yy

ranges from 1/2 to =. Thus all possible values of Yy are assumed
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a
-L: by the Bin(l,a) family. Now, let Yy(a) be a sum of Gp’ Xa's.
)
. Then:
‘.
2?
- 4.1. —0) = B— - (—2
-Q? (4.1.1) Pr(YO(a) 0) p+aa (q+2Yp)Yp .
W
(b It follows from (4.1.1) that if B(y,p) denotes sup d(YO),
l
q".
ﬁ over all YO with common (y,p) that:
%7 4.1.2 B( 2
@ (4.1.2) Y,p) > (q+2Yp)YP = 2yp(1+0(1)) .
I
-
N\
_ Thus as mentioned in the introduction the bound Z2yp for d(YO)
= is asymptotically (p=+0) sharp.
k.
). o 4.2, Solovyev's (1971) bounds require existence and knowledge of
'ﬂ X" for some me(2,3], and of EZZ, in addition to our requirements.
- 1/m-1
. Defining Yo = [EXm/(EX)m} , his bound are O(Ymp) as p > 0 while
ours are O0(yp) (Solovyev's bounds depend on Ym/m-Z and break down
", for m=2). By the log convexity of moments (Marhsall and Olkin
K (1979) p. 74), Ym >y for m > 2. The ratio Ym/y can range from
'
1 to <« depending on EX". It is difficult to make a comparison to
o
‘: cover all possible cases but it appears that the current bounds are
)
¥ in general tighter. For example Solovyev's bound for d(YO) corres-
_ ponding to m = 3 1is 6Y3/Y > 6 times as large as ours as p * 0.
..

4.3. The bounds for FY (t) derived in Sections 2 and 3 immediately
A 0

yield bounds for the renewal function of a terminating renewal process

(see Feller (1971) Section XI.6).

o AT TR B0 g o s R G U S e B L ARG
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4.4, Defining A = 2yp, our upper bound for d(YO) (Theorem 2.1)
is A. I conjecture that the best upper bound is A/A+q. This bound

is achieved for the Bin(l,a) family discussed in Section 4.1.

G(p )

4.5, Given a sequence = Z =1,2,... where Xn and

n i* 0

p, vary with n, it follows from Theorem 2.1 that 1lim YoPo = 0 is

/EY

a sufficient condition for exponential convergence of YO n
’

This condition is not necessary as a slight modification of the example

O,n’

on p. 874 of Brown and Ge (1984) demonstrates. If the Xn are all
NBUE then it follows from p. 872 of Brown and Ge (1984) that a
necessary and sufficient condition for exponential convergence of
Yn/EYn is 1lim pnon = 0 (recall Py = l--Yn in the NBUE case), and

a necessary and sufficient condition for exponential convergence of

q is lim P, = g.

4.6, A simple argument is now presented to show that under very general
conditions geome¢:ric convolutions are asymptotically exponential as p - 0.
Consider a random sequence {Xi, i> 1} which obeys the strong law

of large numbers for ue(0,»), that is:

(4.6.1) Pr(lim X =u) =
n—»m
— 1 2
where Xn =4 z Xi. Define Gp to a random variable which is geome-
1

G
trically distributed with paramete. p. Consider Yo(p) = zp Xi' Now:
1

(4.6.2) pYO(p) = (pGp)XGp .

ety 5 h!

LIy
.io‘nlizi-.”,‘h AN *"“




It follows from (3.1.12) that d(pGp) = p and thus pGp

converges in distribution to an exponential with mean 1. By
(4.6.1), ié a-3" 4, thus pYo(p) converges in distribution
to an exponegtial with mean wu.

In the i.i.d. case 0 < EX < » guffices for exponential
convergence of YO. It 1s not necessary that X be non-negative,
or that Gp be independent of {Xi’ i > 1}, or that EX? < w,

It is also seen that a large variety of dependent sequences
lead to exponential convergence of geometric convolutions, for
example stationary ergodic sequences with 0 < u < «. An
interesting problem is to obtain error bounds for d(YO) (also
d(Y) and d(Y0+Z)) for various classes of dependent sequences
(X;, 1> 1}

If we relax (4.6.1) to convergence in probability but impose

the condition that Gp be independent of {Xi}, then again

pYO(p) is asymptotically exponential.
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